Complementably universal Banach spaces, II

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Complementably Universal Banach Spaces, Ii

The two main results are: A. If a Banach space X is complementably universal for all subspaces of c0 which have the bounded approximation property, then X∗ is non separable (and hence X does not embed into c0), B. There is no separable Banach space X such that every compact operator (between Banach spaces) factors through X. Theorem B solves a problem that dates from the 1970s.

متن کامل

On Banach spaces of universal disposition

We present: i) an example of a Banach space of universal disposition that is not separably injective; ii) an example of a Banach space of universal disposition with respect to finite dimensional polyhedral spaces with the Separable Complementation Property; iii) a new type of space of universal disposition nonisomorphic to the previous existing ones.

متن کامل

Approximation properties and universal Banach spaces

© Mémoires de la S. M. F., 1972, tous droits réservés. L’accès aux archives de la revue « Mémoires de la S. M. F. » (http:// smf.emath.fr/Publications/Memoires/Presentation.html) implique l’accord avec les conditions générales d’utilisation (http://www.numdam.org/legal.php). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impress...

متن کامل

Quotients of Banach Spaces and Surjectively Universal Spaces

We characterize those classes C of separable Banach spaces for which there exists a separable Banach space Y not containing l1 and such that every space in the class C is a quotient of Y .

متن کامل

On Classes of Banach Spaces Admitting “small” Universal Spaces

We characterize those classes C of separable Banach spaces admitting a separable universal space Y (that is, a space Y containing, up to isomorphism, all members of C) which is not universal for all separable Banach spaces. The characterization is a byproduct of the fact, proved in the paper, that the class NU of non-universal separable Banach spaces is strongly bounded. This settles in the aff...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Functional Analysis

سال: 2009

ISSN: 0022-1236

DOI: 10.1016/j.jfa.2009.07.008